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1 Code description

The simulation results presented here have been performed using the discon-
tinuous Galerkin solver Aghora [1,2]. The computer code Aghora is designed
to solve the full set of compressible Navier-Stokes equations in three dimen-
sions. The unstructured solver supports high-order meshes and different types
of elements (hexahedra, tetrahedra, and prisms). The DG discretization is
based on a modal approach that relies on the use of a hierarchy of orthog-
onal polynomial functions as basis for the Galerkin projection. The solution
in each element is thus expressed in terms of a polynomial expansion, the
coefficients of which constitute the degrees of freedom of the problem. In the
particular case of parallelepipeds the Legendre basis is used. For tetrahedral
elements we use the Dubiner orthogonal polynomial basis, based on Jacobi
polynomials. A modified Gram-Schmidt orthonormalization procedure is used
for general-shaped elements.

The Lax-Friedrichs and Roe’s finite volume schemes can be used to approxi-
mate the convective fluxes across the element interfaces. The viscous fluxes can
be discretized using the BR2 scheme [3] or the symmetric interior penalty (SIP)
method [4]. Time integration can be performed either explicitly or implicitly.
Explicit time stepping is based on strong stability preserving Runge-Kutta
schemes [5]. More details on the implementation of the implicit approach can

be found in [6].

Two parallel strategies have been implemented into Aghora which rely on a
non-blocking and synchronous point-to-point send method. The first is a clas-
sic approach based on the MPI paradigm. The second is a hybrid approach
combining MPI and OpenMP. OpenMP is used as a coarse-grain parallelism in
which each thread takes care of a subset of elements and faces of the computa-
tional grid during the whole iterative time loop. Both strategies have shown the
same behaviour in the tests performed on the Curie cluster (PRACE French



Tier-0 system) for a fixed number of cores. Strong scalability analyses have
yielded a ratio of 88% between the obtained speedup and the ideal speedup
using 21,952 cores and a polynomial degree of 2. Additional savings in the ex-
ecution time have been obtained by using the hybrid strategy for polynomial
degrees p = 2 or higher. Typically, for p = 4 the gain ranges between 13% and
19%.

The computational results presented in this paper have been obtained by
using the pure MPI approach on 896 cores. An explicit third-order Runge-
Kutta scheme has been employed for time integration. The discretization of the
convective fluxes is based on the Lax-Friedrichs scheme and the SIP method
is used for the discretization of the viscous fluxes.

2 Case summary

The simulation has been performed on the Onera production cluster with 896
cores, using a standard MPI strategy relying on non-blocking and synchronous
communications. This cluster is an SGI Altix ICE 8200EX platform offering
computing nodes composed of 2 six-core Intel Westmere X5675 processors (12
Mo Cache, 3.07 GHz). This cluster incorporates a Lustre parallel distributed
file-system and an InfiniBand interconnect network. On this architecture, the
TauBench displays a total of 7.341s on a devoted node with the parameters
proposed in the high-order workshop guidelines. Starting from that score, for
the current simulation, the cost per iteration is about 349.75 Work Units.

The time step of the simulation is At = 107, normalised by h/uy. It is worth
noting that the severe restriction on the time step arises from the convective
time scale of the acoustic waves due to the low value of the Mach number
(M, = 0.1), and not from the viscous time scale associated to the penalty
term in the SIP method.

The initial solution corresponds to a uniform flow field in the channel. The
solution is advanced in time until a statistically steady state is reached. From
this point, the flow statistics are gathered over a sufficient number of convective
times (t. = 9h/up).

3 Meshes

The Gmsh second-order mesh provided on the workshop website and composed
of 128 x 64 x 64 elements has been employed. The polynomial degree of the



simulation is p = 3, which leads to a total number of degrees of freedom of
the order of 33.5M.

4 Results

In this section we provide preliminary results for the mean and fluctuating
velocity profiles. So far, the statistics have been averaged over only 7 convective
times. The simulations are currently being pursued until convergence of the
statistical quantities is reached. Figure 1 shows the evolution of the mass flow
at the hill crest and the forcing term dpdx over time (in convective time units
t.). The averaged global flow conditions (averaged over the averaging period)
normalised by p, up, and h are :

r(z = 0) = 9.9997 - 101, Re, = 2800, dpdx = —0.0107
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Fig. 1. Evolution of mass flow at hill crest and forcing term with time (normalised
by the convective time ¢.).

Figures 2 and 3 show the profiles of mean streamwise and vertical velocity at
the following spatial locations: x/h = 0.05,0.5,1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0.
The results from the DG — p3 simulation are compared to the reference DNS
results of Breuer et al. [9]. In their paper, the authors used an incompressible
second-order finite volume solver (LESOCC) on a curvilinear grid composed
of 13.1 million points to perform a DNS at Re = 2, 800.

We can see from Figs. 2 and 3 that, despite the relatively short averaging
time used to compute these statistics, a good agreement is found for the mean
velocity profiles. The discrepancies found in the fluctuating profiles are due
to a insufficient averaging period. As already mentioned above, the averaging
process is being pursued until we reach full statistical convergence. The time
and spanwise averaged streamwise velocity field is depicted in Fig. 7. The sep-
aration length is found to be approximately xg/h = 2.2 and the reattachment
length xp/h = 5.4, which is in agreement with the values reported in [9].
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Fig. 2. Profiles of the mean streamwise velocity U/u; from the DNS computations
at Re = 2,800. The dashed black lines correspond to the reference results of Breuer
et al. The solid blue lines correspond to the results from the DG — p3 simulation.
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Fig. 3. Profiles of the mean vertical velocity V/u; from the DNS computations at
Re = 2,800. The dashed black lines correspond to the reference results of Breuer et
al. The solid blue lines correspond to the results from the DG — p3 simulation.
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Fig. 4. Comparison of profiles of the Reynolds stresses u'u'/ u% from the DNS com-
putations at Re = 2,800. The dashed black lines correspond to the reference results
of Breuer et al. The solid blue lines correspond to the results from the DG — p3
simulation.
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Fig. 5. Comparison of profiles of the Reynolds stresses v'v//u? from the DNS com-
putations at Re = 2,800. The dashed black lines correspond to the reference results
of Breuer et al. The solid blue lines correspond to the results from the DG — p3
simulation.
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Fig. 6. Comparison of profiles of the shear stresses u/v'/uj from the DNS compu-
tations at Re = 2,800. The dashed black lines correspond to the reference results
of Breuer et al. The solid blue lines correspond to the results from the DG — p3
simulation.
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Fig. 7. Streamlines of the time-averaged streamwise velocity field U/u; from the
DG — p3 DNS computation at Re = 2,800. The colour map corresponds to the
time-averaged streamwise velocity U/uy.
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